Organism

\[ \begin{align}\begin{aligned}\newcommand\blank{~\underline{\hspace{1.2cm}}~}\\% Bold symbols (vectors) \newcommand\bs[1]{\mathbf{#1}}\\% Poor man's siunitx \newcommand\unit[1]{\mathrm{#1}} \newcommand\num[1]{#1} \newcommand\qty[2]{#1~\unit{#2}}\\\newcommand\per{/} \newcommand\squared{{}^2} % % Scale \newcommand\milli{\unit{m}} \newcommand\centi{\unit{c}} \newcommand\kilo{\unit{k}} \newcommand\mega{\unit{M}} % % Angle \newcommand\radian{\unit{rad}} \newcommand\degree{\unit{{}^\circ}} % % Time \newcommand\second{\unit{s}} % % Distance \newcommand\meter{\unit{m}} \newcommand\m{\meter} \newcommand\inch{\unit{in}} \newcommand\feet{\unit{ft}} \newcommand\mile{\unit{mi}} \newcommand\mi{\mile} % % Volume \newcommand\gallon{\unit{gal}} % % Mass \newcommand\gram{\unit{g}} \newcommand\g{\gram} % % Frequency \newcommand\hertz{\unit{Hz}} \newcommand\rpm{\unit{rpm}} % % Voltage \newcommand\volt{\unit{V}} \newcommand\V{\volt} \newcommand\millivolt{\milli\volt} \newcommand\mV{\milli\volt} \newcommand\kilovolt{\kilo\volt} \newcommand\kV{\kilo\volt} % % Current \newcommand\ampere{\unit{A}} \newcommand\A{\ampere} \newcommand\milliampereA{\milli\ampere} \newcommand\mA{\milli\ampere} \newcommand\kiloampereA{\kilo\ampere} \newcommand\kA{\kilo\ampere} % % Resistance \newcommand\ohm{\Omega} \newcommand\milliohm{\milli\ohm} \newcommand\kiloohm{\kilo\ohm} % correct SI spelling \newcommand\kilohm{\kilo\ohm} % "American" spelling used in siunitx \newcommand\megaohm{\mega\ohm} % correct SI spelling \newcommand\megohm{\mega\ohm} % "American" spelling used in siunitx % % Inductance \newcommand\henry{\unit{H}} \newcommand\H{\henry} \newcommand\millihenry{\milli\henry} \newcommand\mH{\milli\henry} % % Temperature \newcommand\celsius{\unit{^{\circ}C}} \newcommand\C{\unit{\celsius}} \newcommand\fahrenheit{\unit{^{\circ}F}} \newcommand\F{\unit{\fahrenheit}} \newcommand\kelvin{\unit{\K}} \newcommand\K{\unit{\kelvin}}\\% Power \newcommand\watt{\unit{W}} \newcommand\W{\watt} \newcommand\milliwatt{\milli\watt} \newcommand\mW{\milli\watt} \newcommand\kilowatt{\kilo\watt} \newcommand\kW{\kilo\watt} % % Torque \newcommand\ozin{\unit{oz}\text{-}\unit{in}} \newcommand\newtonmeter{\unit{N\text{-}m}}\end{aligned}\end{align} \]

Apr 16, 2025 | 150 words | 2 min read

3.2.4. Organism#

Write a Python program that predicts the approximate size of a population of organisms. The application should allow the user to enter the starting number of organisms, the average daily population increase (as a percentage), and the number of days the organisms will be left to multiply. Mathematically, the population for any day \(n > 0\) can be expressed as

(3.1)#\[\text{Pop}_{n} = \text{Pop}_{n-1}(1 + \frac{\text{percent increase}}{100})\]

Sample Output#

Use the values in Table 3.7 below to test your program.

Table 3.7 Test Cases#

Case

Start

Rate

Days

1

2.5

98

15

Ensure your program’s output matches the provided samples exactly. This includes all characters, white space, and punctuation. In the samples, user input is highlighted like this for clarity, but your program should not highlight user input in this way.

Case 1 Sample Output

$ python3 organism_login.py Starting population, in thousands: 2.5 Average daily increase, in percent: 98 Number of days to multiply: 15 Day Approx. Pop 0 2.500 1 4.950 2 9.801 3 19.406 4 38.424 5 76.079 6 150.637 7 298.261 8 590.557 9 1,169.302 10 2,315.218 11 4,584.132 12 9,076.581 13 17,971.631 14 35,583.828 15 70,455.980

Deliverables#

Save your finished program as organism_login.py, replacing login with your Purdue login. Then submit it along with all the deliverables listed in Table 3.8 below.

Table 3.8 Deliverables#

Deliverable

Description

organism_login.py

Your finished program.

Screenshot(s)

PNG(s) capturing the test case.