\[ \begin{align}\begin{aligned}\newcommand\blank{~\underline{\hspace{1.2cm}}~}\\% Bold symbols (vectors)
\newcommand\bs[1]{\mathbf{#1}}\\% Poor man's siunitx
\newcommand\unit[1]{\mathrm{#1}}
\newcommand\num[1]{#1}
\newcommand\qty[2]{#1~\unit{#2}}\\\newcommand\per{/}
\newcommand\squared{{}^2}
%
% Scale
\newcommand\milli{\unit{m}}
\newcommand\centi{\unit{c}}
\newcommand\kilo{\unit{k}}
\newcommand\mega{\unit{M}}
%
% Angle
\newcommand\radian{\unit{rad}}
\newcommand\degree{\unit{{}^\circ}}
%
% Time
\newcommand\second{\unit{s}}
%
% Distance
\newcommand\meter{\unit{m}}
\newcommand\m{\meter}
\newcommand\inch{\unit{in}}
\newcommand\feet{\unit{ft}}
\newcommand\mile{\unit{mi}}
\newcommand\mi{\mile}
%
% Volume
\newcommand\gallon{\unit{gal}}
%
% Mass
\newcommand\gram{\unit{g}}
\newcommand\g{\gram}
%
% Frequency
\newcommand\hertz{\unit{Hz}}
\newcommand\rpm{\unit{rpm}}
%
% Voltage
\newcommand\volt{\unit{V}}
\newcommand\V{\volt}
\newcommand\millivolt{\milli\volt}
\newcommand\mV{\milli\volt}
\newcommand\kilovolt{\kilo\volt}
\newcommand\kV{\kilo\volt}
%
% Current
\newcommand\ampere{\unit{A}}
\newcommand\A{\ampere}
\newcommand\milliampereA{\milli\ampere}
\newcommand\mA{\milli\ampere}
\newcommand\kiloampereA{\kilo\ampere}
\newcommand\kA{\kilo\ampere}
%
% Resistance
\newcommand\ohm{\Omega}
\newcommand\milliohm{\milli\ohm}
\newcommand\kiloohm{\kilo\ohm} % correct SI spelling
\newcommand\kilohm{\kilo\ohm} % "American" spelling used in siunitx
\newcommand\megaohm{\mega\ohm} % correct SI spelling
\newcommand\megohm{\mega\ohm} % "American" spelling used in siunitx
%
% Inductance
\newcommand\henry{\unit{H}}
\newcommand\H{\henry}
\newcommand\millihenry{\milli\henry}
\newcommand\mH{\milli\henry}
%
% Temperature
\newcommand\celsius{\unit{^{\circ}C}}
\newcommand\C{\unit{\celsius}}
\newcommand\fahrenheit{\unit{^{\circ}F}}
\newcommand\F{\unit{\fahrenheit}}
\newcommand\kelvin{\unit{\K}}
\newcommand\K{\unit{\kelvin}}\\% Power
\newcommand\watt{\unit{W}}
\newcommand\W{\watt}
\newcommand\milliwatt{\milli\watt}
\newcommand\mW{\milli\watt}
\newcommand\kilowatt{\kilo\watt}
\newcommand\kW{\kilo\watt}
%
% Torque
\newcommand\ozin{\unit{oz}\text{-}\unit{in}}
\newcommand\newtonmeter{\unit{N\text{-}m}}\end{aligned}\end{align} \]
Apr 16, 2025 | 216 words | 2 min read
4.2.1. Falling
When an object begins falling due to gravity, the distance the object falls in a
given time \(t\) can be found as shown
(4.1)\[d={1 \over 2}gt^2\]
where \(d\) is the distance in meters (\(\meter\)), \(g\) is the
gravitational force, and \(t\) is the time in seconds (\(\second\)).
Write a function named falling_dist
that accepts an object’s falling
time (in seconds [\(\second\)]) as an argument, and then calculates and
returns the distance in meters \((\meter)\) that the object will fall during
that time. Assume that the gravitational force is constant at \(8.87 \ {\meter \over \second^2}\) (mean surface gravity of Venus). Make sure to define
this function outside your main
function.
Then, inside your main
function, write a loop to iterate through time
values from \(5 (\second)\) to \(50 (\second)\) in \(5 (\second)\)
increments. Inside this loop, call your falling_dist
function to
calculate the falling distance at each time. Finally, format the results as
shown in the table below, using the data in the output table.
Sample Output
Ensure your program’s output matches the provided samples exactly.
This includes all characters, white space, and punctuation. In the
samples, user input is highlighted like
this for clarity, but your program should not highlight user
input in this way.
Sample Output
$ python3 falling_login.py
Time (s) Distance (m)
----------------------
5 110.9
10 443.5
15 997.9
20 1774.0
25 2771.9
30 3991.5
35 5432.9
40 7096.0
45 8980.9
50 11087.5
Deliverables
Save your finished program as falling_login.py
, replacing
login
with your Purdue login. Then submit it along with all the
deliverables listed in Table 4.1
below.